UNC-39, the C. elegans homolog of the human myotonic dystrophy-associated homeodomain protein Six5, regulates cell motility and differentiation.

نویسندگان

  • Judith L Yanowitz
  • M Afaq Shakir
  • Edward Hedgecock
  • Harald Hutter
  • Andrew Z Fire
  • Erik A Lundquist
چکیده

Mutations in the unc-39 gene of C. elegans lead to migration and differentiation defects in a subset of mesodermal and ectodermal cells, including muscles and neurons. Defects include mesodermal specification and differentiation as well a neuronal migration and axon pathfinding defects. Molecular analysis revealed that unc-39 corresponds to the previously named gene ceh-35 and that the UNC-39 protein belongs to the Six4/5 family of homeodomain transcription factors and is similar to human Six5, a protein implicated in the pathogenesis of type I myotonic dystrophy (DM1). We show that human Six5 and UNC-39 are functional homologs, suggesting that further characterization of the C. elegans unc-39 gene might provide insight into the etiology of DM1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Drosophila homolog of the myotonic dystrophy-associated gene, SIX5, is required for muscle and gonad development

SIX5 belongs to a family of highly conserved homeodomain transcription factors implicated in development and disease. The mammalian SIX5/SIX4 gene pair is likely to be involved in the development of mesodermal structures. Moreover, a variety of data have implicated human SIX5 dysfunction as a contributor to myotonic dystrophy type 1 (DM1), a condition characterized by a number of pathologies in...

متن کامل

Functional analysis of the homeodomain protein SIX5.

SIX5 (previously known as myotonic dystrophy associated homeodomain protein - DMAHP ) is a member of the SIX [ sine oculis homeobox (Drosophila ) homologue ] gene family which encodes proteins containing a SIX domain adjacent to a homeo-domain. To investigate the DNA binding specificities of these two domains in SIX5, they were expressed as GST fusion proteins, both separately and together. Aff...

متن کامل

Skeletal muscle Na currents in mice heterozygous for Six5 deficiency.

Myotonic dystrophy results from a trinucleotide repeat expansion between the myotonic dystrophy protein kinase gene (Dmpk), which encodes a serine-threonine protein kinase, and the Six5 gene, which encodes a homeodomain protein. The disease is characterized by late bursts of skeletal muscle Na channel openings, and this is recapitulated in Dmpk -/- and Dmpk +/- murine skeletal muscle. To test w...

متن کامل

DMPK dosage alterations result in atrioventricular conduction abnormalities in a mouse myotonic dystrophy model.

Myotonic dystrophy (DM) is the most common form of muscular dystrophy and is caused by expansion of a CTG trinucleotide repeat on human chromosome 19. Patients with DM develop atrioventricular conduction disturbances, the principal cardiac manifestation of this disease. The etiology of the pathophysiological changes observed in DM has yet to be resolved. Haploinsufficiency of myotonic dystrophy...

متن کامل

Characterization of the expression of DMPK and SIX5 in the human eye and implications for pathogenesis in myotonic dystrophy.

The pathogenic mechanisms underlying myotonic dystrophy (DM), which results from a (CTG) n repeat expansion mutation in the 3'-untranslated region (3'-UTR) of the myotonic dystrophy protein kinase gene ( DMPK ), remain obscure. The multisystemic nature and variable expressivity of the symptoms are unlikely to be explained by a defect in this gene alone. However, the location of the DM-associate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Developmental biology

دوره 272 2  شماره 

صفحات  -

تاریخ انتشار 2004